Book reviews

Kybernetika, Vol. 32 (1996), No. 5, 521--522

Persistent URL: http://dml.cz/dmlcz/124815

Terms of use:

© Institute of Information Theory and Automation AS CR, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
NICOLAS BOURBAKI

Elements of the History of Mathematics

The English translation of the referred book written by famous collective author offers the non-French speaking reader three hundreds of terse pages on the sources of mathematical thinking. The text is divided into 26 sections devoted, e.g., to the foundations and notations, various algebraic topics, elementary geometry, topological, uniform and metric spaces, exponentials and logarithms, real, complex and more-dimensional space, infinitesimal calculus, function and topological spaces, integration and measures, groups, Lie groups, and some other topics. The bibliography offering 245 items, and a name-index conclude the volume.

The book offers a brief but compact and very instructive survey of the roots of modern mathematics, as well as on the sense of its concepts. It is extremely interesting for everybody who wants to know more about the ideas being behind the definitions and theorems known from the classical mathematical works.

Milan Mareš

MILAN MAREŠ

Computation over Fuzzy Quantities

This slight book is focused on a specific and very important part of fuzzy set theory which is fuzzy arithmetics. The author makes distinction between fuzzy quantities and fuzzy numbers. Fuzzy quantities are special fuzzy sets on real numbers which are sup-normall (existence of an element with the membership degree 1 is not assured) and non-zero membership degrees may occur only in some interval. Fuzzy numbers are, on the other hand, fuzzy quantities which are convex and there is exactly one element with the membership degree 1. Hence, the results presented in this book are more general than the results about fuzzy numbers generally presented elsewhere. Let us stress that the book contains many original results obtained by the author.

The book is written in an excellent and clear style, accompanied by many examples demonstrating the presented computational methods. Though mathematically precise, the book contains no proof and thus it does not possess the typical mathematical style “definition – theorem – proof.” Therefore, it may be useful also for non-mathematicians and engineers who seek especially methods. Very nice on this book is that clear and precise explanation pulls the reader into the subject so that he may be able to give the proofs himself.

The book consists of 14 short chapters and is very compact. The author divides it into four parts: Fundamentals (Chapters 1–3), Algebra of Fuzzy Quantities (Chapters 4–5), Related topics (Chapters 6–9) and Applications. It is a pity that these parts are not mentioned in the Table of Contents.

After short overview of the basic notions, the arithmetics of fuzzy quantities is introduced and some its properties are demonstrated. Third and fourth parts are devoted to
some generalizations and applications. Very interesting is the extension to the multidimensional case in Chapter 6 which leads to the calculus of vectors of fuzzy numbers. Chapter 8 presents the convolutive method for operations with fuzzy numbers. Comparison with classical extension principle method and some its advantages are also presented. This part is closed by the concept of \(L \)-fuzzy quantities.

Applications (Chapters 10–14) concern methods related especially to economy and marketing, namely critical path method, multicriteria decision-making and game theory. Especially interesting are the first two. Though decision-making is extensively studied in the literature, the author managed to present all these topics in a concise way fully integrated with the previous explanation.

Except for 116 references, the reader finds also a list of journals which publish works dealing or applying the fuzzy set theory.

As I have already stressed, the global impression of this book is very positive and this cannot be harmed by few deficiencies which occur in every book. Probably most striking is the use of the term "representation principle" instead of the common "extension principle" (introduced already by L. A. Zadeh), without mentioning the latter. I also lack figures demonstrating the operations which would improve the readability of the book. The author time to time mixes uncertainty with vagueness though originally he makes clear distinction between these two phenomena.

Highly valuable is the specialization of this book as the applications of fuzzy arithmetics are very important and increasing. Some questions might be elaborated into more details. The book would be extremely useful for engineers if it contained tables summarizing the most important methods and properties of relations introduced in the text. I hope that this will be added, if the second edition of this nice book appears. Anyway, I can recommend the book to everybody who is interested or wants to apply fuzzy arithmetics.

\[\text{Vilém Novák} \]
Dear Delio Mugnolo, I don't have an answer, but I would just remark that Bourbaki's "Elements of History of Mathematics" recollects the historical sections disseminated in the volumes of the "Elements of Mathematics". No, my motivation is mostly historical curiosity. I would not say the same may be asked for all other Bourbaki books: it is well known who of the Bourbakiists was more interested in set theory, topology, complex analysis etc. None of them seem to have been an expert in history of maths, to the best of my knowledge. Whence the question.

The area of study known as the history of mathematics is primarily an investigation into the origin of discoveries in mathematics and, to a lesser extent, an investigation into the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, together with Ancient Egypt and Ebla began using arithmetic.