I taught the Phys.323 (Modern Physics) in Fall 2011. This course is usually taught for students who just have finished the Phys.131 and 132 (Introductory Physics) in the SUNY at Binghamton. In Phys.131 and 132, we do not teach the modern physics (we teach the simple case of the special relativity). The number of students enrolled in the Phys.323 was 30. My lecture notes are presented here. In the class, of course, the entire topics have not been covered because of such limited times. Although my lecture notes are far from completeness, it is my hope that this notes may be useful for physics students who want to understand the essence of physics. While preparing these lectures notes, I must confess that I really enjoyed studying physics using the Mathematica.

I used a text book of Modern Physics for Scientists and Engineers, Third edition, Stephen T. Thornton and Andrew Rex (Brooks/Cole Cengage Learning). Selected topics of Chapters (between Chapters 2 and 10) were taught. I also adopted the system of the WebAssign as the homeworks (some of problems chose from the textbooks. The homeworks for each chapter were sloved by students using the internet.

Note that students need knowledge of quantum mechanics for some topics. Even if they have difficulty of understanding them at this moment, it is suggested that they could read again after they study the quantum mechanics in near future.

Contents

1 Special relativity (review from Phys.132)
2 Minkowski space time diagram
3 Doppler effect
4 Relativistic mechanics
5 Relativity of magnetic and electric fields
6 Compton effect
7 Davisson and Germer electron diffraction
8 Rutherford scattering
9 x-ray diffraction
10 Crystal structure and reciprocal lattice
11 Black body problem
12 Radiation
13 Heisenberg's principle of uncertainty
14 de Broglie waves
15 One dimensional barrier problems
16 Bohr model
17 Schrödinger equation
Wave packets
One dimensional bound states
Simple harmonics
Quantum box
Hydrogen atom
Real hydrogen atom
WKB approximation (I)
WKB for simple harmonics (II)
Zeeman effect
Stern-Gerlach experiment
Periodic table and Hund's law
Boltzmann theory of gas
Bose-Einstein condensation
BEC in alkali atoms
Fermi-Dirac distribution function
White dwarf and neutron star
Superconductivity
Josephson effect
Laser physics
Maser physics
Bloch theorem and energy band
Electrical conductivity in metals
Charge density wave
Ferromagnetism and antiferromagnetism

REFERENCES

(Modern Physics)
((General physics))

((Physics in general))
6. G. Greenstein and A. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett Publisher (Sudbury, MA, 1997).

((Special relativity))
6. R. Skinner, Rlativity for Scientists and Engineers (Dover, New York, 1982).

((Superconductivity))
8. M. Suzuki and I.S. Suzuki, Ginzburg-Landau theory for superconductivity,
 http://www2.binghamton.edu/physics/docs/ginzburg-landau.pdf

((Quantum mechanics))

((Solid State Physics))

((Classical mechanics))
3. P. Hamill, Intermediate Dynamics (Jones and Bartlett Publisher Sudbury, Massachusetts, 2010).

((Electricity and magnetism))

((Statistical physics and thermodynamics))

((Magnetism))

((Optics))

((Laser))

((Atomic physics))

(Mathematical physics)

(Lecture Notes on Advanced Laboratory)
M. Suzuki Optical pumping of 87Rb atoms
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_Optical_pumping.pdf
M. Suzuki Zeeman effect
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_ZeemanEffect.pdf
M. Suzuki Faraday rotation
http://bingweb.binghamton.edu/~suzuki/pdffiles/AC_Faraday_rotation.pdf
M. Suzuki Spin echo methods of nuclear magnetic resonance (NMR)
http://bingweb.binghamton.edu/~suzuki/pdffiles/LN_NMR.pdf
PHYSICS 323 - Fall 2011. Phys 323 Lecture on Historical Quantum Mechanics. 19 pages. Calculate commutator of V_x and \hat{V}_x. Therefore V_x must be symmetric. The City College of New York, CUNY. PHYSICS 323 - Fall 2011. Phys 323 Lecture on Homework Problems. 20 pages. the choice of the short axis is arbitrary B Lowest and the same energy for Two. Phys 323 Lecture on Hydrogen Schrödinger Equation. 16 pages. If you look at a particle under a microscope the particles momentum \hat{p}.