The claim that the book provides "... clinical investigators with an up-to-date review of our current knowledge ..." is supported by the contents to some extent, but may well cause disappointment. Certainly potassium concentrations of cadavers and biopsy samples receive good coverage. However, specialists in renal pharmacology who turn to the brief section on diuretics will find reference only to amiloride, ouabain and furosemide. The last is certainly important; amiloride is hardly a front-line diuretic, although its potassium-sparing properties make it relevant to the book: reference to ouabain in the clinical context of a diuretic is, to a non-cardiologist, stretching things a little far. There is no mention of adynamia episodica hereditaria (Gamstorp's disease) or familial periodic paralysis. Both may have been considered too rare to rate mention, but they are fascinating disorders, profoundly influenced by potassium administration, which the specialist might reasonably expect to find in Cell Potassium. Again, for some years clinicians have looked for, and found, changes in blood cell sodium–potassium ATPase activities and in potassium and sodium ion concentrations in patients suffering from hypertension, uraemia, depressive illnesses and other disorders. This reviewer failed to find mention of these, but it could be argued that they have made a real mark on the literature only in the last few years.

On the whole this is an extremely well written book which deals with great clarity with a wide spectrum of topics. It is a book which will be welcomed by many basic scientists and, in addition, it is probably worth recommending to students of Physiology, Biochemistry and related sciences.

J. C. GILBERT

Biochemical Applications of Mass Spectrometry (First Supplementary Volume)

GEORGE R. WALLER and OTIS C. DERMER (Editors)
John Wiley and Sons, New York, 1980, pp. 1279, £81.75

As the subtitle indicates, this multi-author book is the first supplementary volume to the parent book published in 1971. Its primary objective is to review the work of the last nine years on the application of mass spectrometry to biochemical research and also bring up-to-date instrumental, computer and interpretative aspects of the technique. This is an ambitious undertaking in the light of the very large increase in the use of mass spectrometry in recent years and the wide audience at which the book is directed. Where possible, authors of the first volume were invited to update their initial contributions, and in all cases where this has been done, there is minimal repetition of information, and illustrations, tables, structures and references are consecutively numbered to the original chapters.

The material is presented in the same format as the parent book and is in three sections. The first of these deals with instrumentation, with emphasis on computer data-acquisition and -processing systems. The second section covers developments in the interpretation of mass-spectral data, and the remaining section, comprising 80% of the book, is devoted to applications. Eight new chapters have been added to this last section, including chapters on environmental sample analysis which, although not strictly biochemical in application, have biomedical implications. Other additions include a major chapter on mass-spectrometry application to clinical medicine and a chapter on the analysis of volatile compounds in man.

The book makes a significant contribution to the review literature on mass spectrometry and will give the reader an authoritative introduction to specific biochemical applications and provide material on related topics. The comprehensiveness of the text, however, has resulted in a book of high cost which will unfortunately dissuade most individuals and many libraries from ownership. Nevertheless the editors have taken full advantage of the size of this volume and provided a substantial base of well-ordered information, particularly for those of short experience in mass spectrometry, which will serve to familiarize the reader with the subject quickly and provide the necessary references for deeper investigation. The pitfall of superficiality has been avoided and, although experienced workers may not always find sufficient depth in chapters on their own specialties, the range of topics covered should prove invaluable.

Finally, one should question the necessity of compiling a book on the applications of a technique which may now be considered a routine tool for biochemists. It is true that mass spectrometry is much more widespread than it was ten years ago, but the sophisticated nature of mass-spectrometry instrumentation, the physical processes involved and the computer processing of data, promote the subject as a fascinating science and one which continues to develop and expand. Although routine use may be made of mass spectrometry, new developments in the technique and its application continue to open up new avenues of research. It is important that the biochemist can reach for an up-to-date book written by leaders in the field, covering a sufficient range of topics to be useful, while the mass spectrometrist has similar access with an appreciation of the potential of his technique in biochemistry.

A. M. LAWSON

Metal Ion Activation of Dioxygen

T. G. SPIRO (Editor)
J. Wiley and Sons, New York, 1980, pp. 247, £16.00

To be tired of the chemistry of oxygen is to be tired of life. Though this volume allows us only a snatched breath of the subject, it is no less invigorating for all that. The first chapter on 'Dioxygen binding to heme proteins and their synthetic analogues', by J. P. Collman, T. R. Halbert and K. S. Suslick, describes the various attempts to incorporate the presumed essentials of the globins into relatively simple molecules. The authors claim, as a postulate of bioinorganic chemistry, that relatively small metal complexes should be capable of emulating the chemistry of metallobiomolecules. The ease of attainment of this desirable goal depends, to a large extent, on the substrate: the less complicated the latter, the easier the task. Thus if dioxygen is considered to be the only substrate of dioxygen transport N-storage proteins, physiologically a gross oversimplification, then indeed many small complexes are capable of fulfilling this limited function. If dioxygen is only one of two substrates, as in peroxidases and oxygenases, then the scale of the molecular architecture will have to be greatly increased before the selectivity and specificity of the enzymes can be approached, let alone emulated. The elegance in the design of the models and the synthetic skill required and associated with the work of Collman, Traylor, Baldwin and Battersby and their colleagues have rightly elicited much admiration. One of the most
Mass Spectrometry (MS) is an analytical chemistry technique that helps identify the amount and type of chemicals present in a sample by measuring the mass-to-charge ratio and abundance of gas-phase ions. In this instrumental technique, sample is converted to rapidly moving positive ions by electron bombardment and charged particles are separated according to their masses. Mass spectrum is a plot of relative abundance against the ratio of mass/charge (m/e). Applications of Mass Spectrometry (MS). Environmental monitoring and analysis (soil, water and air pollutants, water quality, etc.) Geochemistry age determination, soil and rock composition, oil and gas surveying. @inproceedings{Waller1980BiochemicalAO, title={Biochemical Applications of Mass Spectrometry, First Supplementary Volume}, author={George R. Waller and Otis C. Dermer}, year={1980}. A supplement to the standard work, published in 1972, covering instrumentation, interpretation of spectra, and application. Save to Library. Create Alert.
Mass spectrometry’s characteristics have raised it to an outstanding position among analytical methods: unequalled sensitivity, detection limits, speed and diversity of its applications. In analytical chemistry, the most recent applications are mostly oriented towards bio-chemical problems, such as proteome, metabolome, high throughput in drug discovery and metabolism, and so on. Which are unitless, m/z is used to denote a dimensionless quantity. Generally in mass spectrometry, the charge is indicated in multiples of the elementary charge or charge of one electron in absolute value (\(1 \text{e} = 1.602 \times 10^{-19} \text{C}\)) and the mass is indicated in atomic mass units (\(1 \text{u} = 1.660540 \times 10^{-27} \text{kg}\)). The applications of mass spectrometry for identifying modern biochemical markers of nephropathies. Article. Nov 2009. Mass spectrometry (MS) was introduced into clinical laboratories, and first applied to the evaluation of children at risk of inborn errors of metabolism. For the analysis of macromolecules and in particular for proteins, glycoconjugates and polynucleotides, a major milestone was achieved with the development in 1987 of matrix assisted laser desorption ionization by Karas and Hillenkamp and in 1988 of electrospray ionization by J. Fenn. Chapter Eight: Mass Spectrometry Imaging for the Investigation of Intratumor Heterogeneity. Abstract. 1 Tumor Heterogeneity. Chapter Ten: Rapid Mass Spectrometry Imaging to Assess the Biochemical Profile of Pituitary Tissue for Potential Intraoperative Usage. Abstract. 1 Introduction. This volume presents original reviews on applications of mass spectrometry imaging to cancer. Key Features. Provides information on cancer research.