This book is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide sources to help scientists, engineers, and technicians solve current and long-range problems.

Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

Library of Congress Cataloging-in-Publication Data
ASM International
ASM Handbook
Includes bibliographical references and indexes
Contents: v.1. Properties and selection—irons, steels, and high-performance alloys—v.2. Properties and selection—nonferrous alloys and special-purpose materials—[etc. ]—v.22B. Metals Process Simulation

SAN: 204-7586
ISBN-10: 1-61503-005-0

ASM International®
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

Multiple copy reprints of individual articles are available from Technical Department, ASM International.

Many of the sections in this Volume will be familiar to *ASM Handbook* users, as they have been covered extensively across the *ASM Handbook* series: phase diagrams, casting and solidification, forming, machining, powder metallurgy, joining, heat treatment, and design. This Volume interprets these subjects in the interdisciplinary context of modeling, simulation, and computational engineering.

The high cost of capital investment in manufacturing can be mitigated by modeling and simulating the options. The effects of processing on materials can be tested and understood through modeling. This Volume and its companion, Volume 22A, provide materials engineers and scientists with the information they need to understand the potential and advantages of modeling and simulation and to provide them with the tools they need to work with the modeling experts.

When the first *ASM Handbook* was published in 1923 by ASM International’s predecessor, the American Society for Steel Treaters, the computational tools of choice were a slide rule, paper, pencil, and data tables—all conveniently sized to slip into a lab coat pocket. Today, computational tools are almost entirely software based, although some handheld electronics are also conveniently sized to slip into a lab coat pocket. Many of the basic concerns between then and now are the same: how to control properties during processing, how to minimize waste, how to maintain quality, and so on. Additional contemporary concerns include automated manufacturing, new alloys, new applications such as aerospace and medical devices, environmental responsibility, tracking, and so on.

ASM International is indebted to co-editors David Furrer and S. Lee Semiatin for their vision and leadership in bringing Volumes 22A and 22B to completion. The many authors and reviewers who worked on these Volumes shared that vision. Unlike the subjects about which they wrote, a technical article cannot be modeled or simulated; it must take tangible form as text and images, and this Volume is the direct result of the contributors’ generosity in sharing their time and expertise.

That first *ASM Handbook* was published as a loose-leaf collection of data sheets assembled in a leather-bound binder. Today’s *ASM Handbooks* are available online, in hardcover, or as DVDs. Times have changed, and ASM International continues to provide the quality information that materials science professionals need to chart the course of the future for their industries.

Frederick J. Lisy  
President  
ASM International

Stanley C. Theobald  
Managing Director  
ASM International
Preface

Computer-aided engineering and design have substantially changed the way new products are developed and defined. The pencil and drafting table have long since been replaced by the mouse and computer monitor. To date, much of this engineering transformation has been limited to geometric design, or the form and fit of a component. Efforts are now ongoing to develop computer-based tools to assess the function of components under the intended final application conditions (i.e., temperature, environment, stress, and time).

There have been substantial efforts over the past 25 years to develop and implement computer-based models to simulate manufacturing processes and the evolution of microstructure and accompanying mechanical properties within component materials. The rate of change within this area of engineering has continued to increase with increasing industrial application benefits from the use of such engineering tools, accompanied by the reduced cost and increased speed of computing systems required to perform increasingly complex simulations.

Volumes 22A and 22B of the *ASM Handbook* series summarize models that describe the behavior of metallic materials under processing conditions and describe the development and application of simulation methods for a wide range of materials and manufacturing processes. Such information allows the sharing of best practices among diverse scientific, engineering, and manufacturing disciplines. Background information on fundamental modeling methods detailed in Volume 22A provides the user with a solid foundation of the underlying physics that support many industrial simulation software packages. The present Volume provides an overview of a number of specific metals processing simulation tools applicable in the metals manufacturing industry for a wide range of engineering materials.

All simulation tools require a variety of inputs. For example, details regarding material and process boundary conditions are critical to the success of any computer-based simulation. Thus, this Handbook also provides information regarding material and process boundary conditions that are applicable to manufacturing methods. Additionally, this Volume provides guidance regarding how to develop and assess required thermophysical material data for materials that have not been previously characterized, so practitioners of simulation software packages can effectively generate required material and manufacturing process databases to enable successful predictions for metals processing methods.

The benefits provided by integrated computational materials engineering include reduced component development time, enhanced optimization of component design (design for performance, design for manufacturing, and design for cost), and increased right-the-first-time manufacturing. These benefits have led to an overwhelming pull for materials and manufacturing process simulation integration with early stages of component design.

D.U. Furrer, FASM  
Rolls-Royce Corporation

S.L. Semiatin, FASM  
Air Force Research Laboratory
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg * 10^3) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm^2 rather than kg/m^3 as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Officers and Trustees of ASM International (2009–2010)

Frederick J. Lisy
President and Trustee
Orbital Research Incorporated

Mark F. Smith
Vice President and Trustee
Sandia National Laboratories

Paul L. Huber
Treasurer and Trustee
Seco/Warwick Corporation

Roger J. Fabian
Immediate Past President and Trustee
Bodycote Thermal Processing

Stanley C. Theobald
Managing Director and Secretary
ASM International

Members of the ASM Handbook Committee (2009–2010)

Kent L. Johnson
(Chair 2008–; Member 1999–)
Materials Engineering Inc.

Craig D. Clauser
(Vice Chair 2009–; Member 2005–)
Craig Clauser Engineering Consulting Incorporated

Larry D. Hanke
(Immediate Past Chair; Member 1994–)
Materials Evaluation and Engineering Inc.

Viola L. Acoff (2005–)
University of Alabama

Lichun Leigh Chen (2002–)
Technical Materials Incorporated

Sarup K. Chopra (2007–)
Consultant

Craig V. Darragh (1989–)
The Timken Company (ret.)

Jon L. Dossett (2006–)
Consultant

Alan P. Druschitz (2009–)
University of Alabama-Birmingham

David U. Furrier (2006–)
Rolls-Royce Corporation

Jeffrey A. Hawk (1997–)
National Energy Technology Laboratory

William L. Mankins (1989–)
Metallurgical Services Inc.

Joseph W. Newkirk (2005–)
Missouri University of Science and Technology

Robert P. O'Shea, Jr. (2008–)
Baker Engineering and Risk Consultants

Cory J. Padfield (2006–)
American Axle & Manufacturing

Digby D. Macdonald
Penn State University

Charles A. Parker
Honeywell Aerospace

Jeffrey S. Smith (2009–)
Material Processing Technology LLC

Kenneth B. Tator (1991–)
KTA-Tator Inc.

Jeffrey A. Hawk
(2004–2006) (Member 1999–)

Larry D. Hanke
(2006–2008) (Member 1994–)

Kent L. Johnson
(2008–2010) (Member 1999–)

Chairs of the ASM Handbook Committee

J.F. Harper
(1923–1926) (Member 1923–1926)

W.J. Merten
(1927–1930) (Member 1923–1933)

L.B. Case
(1931–1933) (Member 1927–1933)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

J.P. Gill
(1937) (Member 1934–1937)

R.L. Dowdell
(1938–1939) (Member 1935–1939)

G.V. Luerssen
(1943–1947) (Member 1942–1947)

J.B. Johnson
(1948–1951) (Member 1944–1951)

E.O. Dixon

N.E. Promisel

R.W.E. Leiter

D.J. Wright
(1964–1965) (Member 1959–1967)

J.D. Graham

W.A. Stullter

G.J. Shubat

R. Ward

G.N. Maniar

M.G.H. Wells

J.L. McCall

L.J. Korb

T.D. Cooper

D.D. Huffman

D.L. Olson

R.J. Austin

W.L. Mankins
(1994–1997) (Member 1989–)

M.M. Gauthier

C.V. Darragh
(1999–2002) (Member 1989–)

Henry E. Fairman

Jeffrey A. Hawk
(2004–2006) (Member 1997–)

Larry D. Hanke
(2006–2008) (Member 1994–)

Kent L. Johnson
(2008–2010) (Member 1999–)
Authors and Contributors

John Agren
Royal Institute of Technology, Stockholm, Sweden

Seokyoung Ahn
The University of Texas-Pan American

Janet K. Allen
University of Oklahoma

Taylan Altan
The Ohio State University

Sudarsanam Suresh Babu
The Ohio State University

C. C. Bampton
Pratt & Whitney Rocketdyne

Jeff J. Bernath
Edison Welding Institute Incorporated

Bernard Billia
Aix-Marseille Université, France

Robert Brooks
National Physical Laboratory, UK

Dennis J. Buchanan
University of Dayton Research Institute

W.S. Cao
CompuTherm LLC

Y.A. Chang
University of Wisconsin

Anil Chaudhary
Applied Optimization Inc.

S.L. Chen
CompuTherm LLC

Suk Hwan Chung
Hyundai Steel Co, South Korea

Seong-Taek Chung
CetaTech, Inc.

Anders Engström
Thermo-Calc Software AB, Stockholm, Sweden

Hans J. Fecht
Ulm University, Germany

Chris Fischer
Scientific Forming Technologies Corporation

D. U. Furrer
Rolls-Royce Corporation

Ch.-A. Gandin
Centre de Mise en Forme des Matériaux, Sophia Antipolis, France

Randall M. German
San Diego State University

Sommath Ghosh
The Ohio State University

Robert Goetz
Rolls-Royce Corporation

Vassily Goloveshkin
Moscow State University of Instrument Engineering and Computer Sciences (MGUPI)

G. Gottstein
Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University, Germany

Jianzheng Guo
ESI US R&D

Samuel Hallström
Thermo-Calc Software AB, Stockholm, Sweden

A. Jacot
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

JongTae Jinn
Scientific Forming Technologies Corporation

D. Kammer
Northwestern University

Kanchan M. Kelkar
Innovative Research Inc.

Pat Koch
Engineous Software

M. V. Kral
University of Canterbury, New Zealand

Matthew John M. Krane
Purdue University

Howard Kuhn
University of Pittsburgh

Young-Sam Kwon
CetaTech, Inc.

Peter D. Lee
Department of Materials, Imperial College, London, U.K

Guoji Li
Scientific Forming Technologies Corporation

Ming Li
Alcoa Technical Center

Kong Ma
Rolls-Royce Corporation

Paul Mason
Thermo-Calc Software Inc., Stockholm, Sweden

Ramesh S. Minisandram
ATI Allvac

Alec Mitchell
University of British Columbia

D. A. Molodov
Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University, Germany

Seong Jin Park
Mississippi State University

Suhas V. Patankar
Innovative Research Inc.

Ashish D. Patel
Carpenter Technologies

Michael Preuss
Manchester University, UK

Peter J. Quested
National Physical Laboratory, UK

A. D. Rollett
Carnegie Mellon University

Yiming Rong
Worcester Polytechnic Institute

D. J. Rowenhorst
US Naval Research Laboratory

Valery Rudnev
Inductoheat Incorporated

Victor Samarov
Syntech PM

Mark Samonds
ESI US R&D

N. Saunders
Thermotech / Sente Software Ltd., UK

S. L. Semiatin
Air Force Research Laboratory

L. S. Shvindlerman
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia

Richard D. Sisson, Jr.
Worcester Polytechnic Institute
G. Spanos  
US Naval Research Laboratory

Shesh K. Srivatsa  
GE Aviation

Santosh Tiwari  
Engineous Software

Juan J. Valencia  
Concurrent Technologies Corporation

Alex Van der Velden 
Engineous Software

P. W. Voorhees  
Northwestern University

Ronald A. Wallis  
Wyman Gordon Forgings

Gang Wang  
Worcester Polytechnic Institute

Junsheng Wang  
Department of Materials, Imperial College, London, UK

Philip J. Withers  
Manchester University, UK

K.S. Wu  
CompuTherm LLC

Wei-Tsu Wu  
Scientific Forming Technologies Corporation

Junde Xu  
Edison Welding Institute Incorporated

Jaebong Yang  
Scientific Forming Technologies Corporation

Y. Yang  
CompuTherm LLC

F. Zhang  
CompuTherm LLC
## Reviewers

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Institution/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylan Altan</td>
<td>The Ohio State University</td>
</tr>
<tr>
<td>Egbert Baake</td>
<td>Leibniz Universität Hannover</td>
</tr>
<tr>
<td>L. Battezzati</td>
<td>Università di Torino</td>
</tr>
<tr>
<td>Michel Bellet</td>
<td>Centre de Mise en Forme des Matériaux, Sophia Antipolis, France</td>
</tr>
<tr>
<td>Hongbo Cao</td>
<td>General Electric Global Research Center</td>
</tr>
<tr>
<td>Qing Chen</td>
<td>Thermo-Calc Software AB, Stockholm, Sweden</td>
</tr>
<tr>
<td>Jon Dantzig</td>
<td>University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td>Uwe Diekmann</td>
<td>Metatech GmbH</td>
</tr>
<tr>
<td>Rollie Dutton</td>
<td>Air Force Research Laboratory</td>
</tr>
<tr>
<td>D.U. Furrer</td>
<td>Rolls-Royce Corporation</td>
</tr>
<tr>
<td>Martin E. Glicksman</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Janez Grum</td>
<td>University Of Ljubljana</td>
</tr>
<tr>
<td>Jianzheng Guo</td>
<td>ESI US R&amp;D</td>
</tr>
<tr>
<td>Larry Hanke</td>
<td>Materials Evaluation and Engineering Inc</td>
</tr>
<tr>
<td>Jeffrey Hawk</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>Edmond Iii</td>
<td>Metaldyne</td>
</tr>
<tr>
<td>Richard Johnson</td>
<td></td>
</tr>
<tr>
<td>Ursula Kattner</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>Lejun Li</td>
<td>Utah State University</td>
</tr>
<tr>
<td>Daan Maijer</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>William Mankins</td>
<td>Metallurgical Services Incorporated</td>
</tr>
<tr>
<td>David McDowell</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Tugrul Ozel</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>S.L. Semiatin</td>
<td>Air Force Research Laboratory</td>
</tr>
<tr>
<td>Brian Thomas</td>
<td>University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td>Ray Walker</td>
<td>Keystone Synergistic Enterprises, Inc.</td>
</tr>
<tr>
<td>Michael West</td>
<td>South Dakota School of Mines and Technology</td>
</tr>
<tr>
<td>John Wooten</td>
<td>CalRAM, Inc</td>
</tr>
</tbody>
</table>
## Contents

### Input Data for Simulations ........................................ 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermophysical Properties of Liquids and Solidification</td>
<td>Juan J. Valencia and Peter Quested</td>
<td>18</td>
</tr>
<tr>
<td>Grain-Boundary Energy and Mobility</td>
<td>G. Gottstein, D.A. Molodov, and L.S. Shvindlerman</td>
<td>67</td>
</tr>
<tr>
<td>Texture Measurement and Analysis</td>
<td>A.D. Rollett</td>
<td>92</td>
</tr>
<tr>
<td>Microstructure Characteristics—Benchmark Data Generated in Microgravity</td>
<td>Hans J. Fecht and Bernard Billia</td>
<td>8</td>
</tr>
<tr>
<td>Casting and Solidification Processing from the Melt</td>
<td>Peter Quested and Robert Brooks</td>
<td>33</td>
</tr>
<tr>
<td>Materials Processing in Space</td>
<td>Measurement Methods</td>
<td>33</td>
</tr>
<tr>
<td>Conclusion and Perspectives</td>
<td>Density</td>
<td>22</td>
</tr>
<tr>
<td>Thermophysical Properties</td>
<td>Thermal Conductivity</td>
<td>24</td>
</tr>
<tr>
<td>Sources and Availability of Reliable Data</td>
<td>Electrical and Thermal Conductivity</td>
<td>25</td>
</tr>
<tr>
<td>Limitations and Warning on the Use of Data</td>
<td>Emissivity</td>
<td>25</td>
</tr>
<tr>
<td>Methods to Determine Thermophysical Properties</td>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>28</td>
</tr>
<tr>
<td>Specfic Heat Capacity and Enthalpy of Transformation</td>
<td>Summary</td>
<td>28</td>
</tr>
<tr>
<td>Enthalpy of Melting, Solidus and Liquidus Temperatures</td>
<td>Measurement of Thermophysical Properties at High Temperatures for Liquid, Semisolid, and Solid Commercial Alloys</td>
<td>28</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>Peter Quested and Robert Brooks</td>
<td>33</td>
</tr>
<tr>
<td>Density</td>
<td>Measurement Methods</td>
<td>33</td>
</tr>
<tr>
<td>Surface Tension</td>
<td>Thermal Conductivity/Thermal Diffusivity</td>
<td>36</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Density</td>
<td>37</td>
</tr>
<tr>
<td>Electrical and Thermal Conductivity</td>
<td>Viscosity</td>
<td>38</td>
</tr>
<tr>
<td>Summary</td>
<td>Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes</td>
<td>40</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>S.L. Semiatin and T. Altan</td>
<td>46</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Tension Test</td>
<td>46</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Uniaxial Compression Test</td>
<td>47</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Ring Test</td>
<td>47</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Plane-Strain Compression Test</td>
<td>50</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Torsion Test</td>
<td>51</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Split-Hopkinson Bar Test</td>
<td>52</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Indentation Tests</td>
<td>52</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Effect of Deformation Heating on Flow Stress</td>
<td>53</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Fitting of Flow-Stress Data</td>
<td>53</td>
</tr>
<tr>
<td>Typical Thermophysical Properties Ranges of Some Cast Alloys</td>
<td>Metallurgical Considerations at Hot Working Temperatures</td>
<td>53</td>
</tr>
<tr>
<td>Pole Figure Measurement</td>
<td>Electron Backscatter Diffraction</td>
<td>97</td>
</tr>
<tr>
<td>Three-Dimensional Microstructure Representation</td>
<td>Summary</td>
<td>98</td>
</tr>
<tr>
<td>Simulation of Phase Diagrams and Transformations .......................... 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Alloy Phase Diagrams and Their Industrial Applications</td>
<td>F. Zhang, Y. Yang, W.S. Cao, S.L. Chen, K.S. Wu, and Y.A. Chang</td>
<td>117</td>
</tr>
<tr>
<td>Application of Thermodynamic and Material Property Modeling to Process Simulation of Industrial Alloys</td>
<td>N. Saunders</td>
<td>132</td>
</tr>
<tr>
<td>Calculation of Phase Equilibria in Multicomponent Alloys</td>
<td>Application of CALPHAD Calculations to Industrial Alloys</td>
<td>135</td>
</tr>
<tr>
<td>Examples of Model Results</td>
<td>Extending CALPHAD Methods to Model General Material Properties</td>
<td>138</td>
</tr>
<tr>
<td>Summary and Observations for the Future</td>
<td>Summary</td>
<td>150</td>
</tr>
<tr>
<td>Examples of Model Results</td>
<td>Simulation of Solidification ........................................ 155</td>
<td></td>
</tr>
<tr>
<td>Modeling of Transport Phenomena during Solidification Processes</td>
<td>Matthew John M. Krane</td>
<td>157</td>
</tr>
<tr>
<td>Conservation Equations for Transport Phenomena</td>
<td>Examples of Model Results</td>
<td>161</td>
</tr>
<tr>
<td>Summary</td>
<td>Computational Thermodynamics</td>
<td>168</td>
</tr>
<tr>
<td>Computational Thermodynamics</td>
<td>Thermophysical Properties</td>
<td>170</td>
</tr>
<tr>
<td>Fundamentals of the Modeling of Solidification Processes</td>
<td>Microstructure Simulation</td>
<td>173</td>
</tr>
<tr>
<td>Defect Prediction</td>
<td>Examples of Modeling Applied in Casting Industries</td>
<td>185</td>
</tr>
<tr>
<td>Conclusions</td>
<td>Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes</td>
<td>191</td>
</tr>
<tr>
<td>Kanchan M. Kelkar, Suhas V. Patankar, Alec Mitchell, Ramesh S. Minisandram, and Ashish D. Patel</td>
<td>Ramesh S. Minisandram, and Ashish D. Patel</td>
<td>196</td>
</tr>
<tr>
<td>Process Description and Physical Phenomena</td>
<td>Computational Modeling of Remelting Processes</td>
<td>197</td>
</tr>
</tbody>
</table>
Modeling and Simulation of Press and Sinter Powder Metallurgy

Simulation of Powder Metallurgy Processes ............ 307

Modeling of Powder Metallurgy Processes

Howard Kahn ..................................... 309

General Considerations of Process Modeling .......... 309

Powder Metallurgy Process Descriptions ............. 310

Models and Applications ........................... 314

Modeling and Simulation of Press and Sinter Powder Metallurgy

Suk Hwan Chung, Young-Sam Kwon, and Seong Jin Park . 323

Brief History .................................... 323

Theoretical Background and Governing Equations ......... 324

Experimental Determination of Material Properties and Simulation Verification ............................. 325

Demonstration of System Use .......................... 328

Conclusion ........................................ 331

Modeling of Hot Isostatic Pressing

Victor Samarov, and Vassily Galoveshkin ................ 335

Introduction to the HIP Process ........................ 335

Evolution of Approaches to HIP Modeling .............. 337

Example of the Modeling Process ..................... 340

Numerical Modeling and Tooling Design of a Casing Component Demonstration .......................... 340

Simulation of Metal Powder Injection Molding

Seokyoung Ahn, Seong-Taek Chung, Seong Jin Park, and Randall M. German ...................... 343

Theoretical Background and Governing Equations ......... 343

Numerical Simulation ................................ 345

Experimental Material Properties and Verification .... 346

Demonstration of Usefulness and Optimization ........ 349

Summary ........................................... 354

Simulation of Machining Processes ...................... 359

Modeling and Simulation of Machining

Christian E. Fischer ................................ 361

Fundamentals and General Considerations ................ 361

Analytical Models .................................. 363

Finite-Element Modeling and Simulation ................. 364

Input Data for Modeling and Simulation ............... 365

Tool Design ....................................... 366

Tool Wear ......................................... 367

Conclusions ....................................... 369

Modeling Sheet Shearing Processes for Process Design

Somnath Ghosh, and Ming Li ........................... 372

Process Parameters .................................. 372

Experimental Studies for Material and Process Characterization ................................................. 376

Edge-Shearing Process Simulation and Parametric Studies .... 379

Shear-Slitting Process Simulation and Parametric Studies ............ 382

Discussions and Summary ................................ 383

Modeling of Residual Stress and Machining Distortion in Aerospace Components

Kong Ma, Robert Goetz, and Shesh K. Srivatsa ........... 386

Introduction—Residual Stress, Distortion, and Modeling ......................................................... 386

Modeling of Heat-Treat-Induced Residual Stress ........ 388

Modeling Data Requirements ............................ 391

Residual-Stress and Distortion Measurement Techniques ... 393

Model Validation on Engine-Disk-Type Components .... 394

Machining-Induced Residual Stresses and Distortions ...... 399

Modeling Benefits .................................... 405

Modeling Implementation in a Production Environment .... 405

Simulation of Joining Operations ....................... 409

Introduction to Integrated Weld Modeling

Sudarsanam Suresh Babu ................................ 411

Process Modeling ..................................... 412

Microstructure Modeling ................................ 414

Performance Modeling ................................ 420

Access and Delivery of Integrated Weld Process Models .... 423

Use of Optimization Methodologies ................. 424

Concluding Remarks ................................ 425

Simulation of Rotational Welding Operations

Philip J. Withers and Michael Preuss ....................... 432

Historical Development ................................ 432

Basic Principles ..................................... 432

Weld Microstructure ................................ 434
Extensive mechanical twinning was observed in high-purity, electron-beam-melted zirconium of ASM International ASME Handbook, Volume 20, Materials Selection and Design. Otto and Wood. "I want to know God's thoughts...the rest are details." Competitive benchmarking of this type, in conjunction with customer needs and the functional architecture, is then used to create a customer-driven specification for the product, known as quality function. 1. ASM International ASME Handbook, Volume 20, Materials Selection and Design. Otto and Wood. deployment.