Editors:
Raine Hermans and Martti Kulvik

SUSTAINABLE BIOTECHNOLOGY DEVELOPMENT
– New Insights into Finland

The Research Institute of the Finnish Economy (ETLA)
Publisher: Taloustieto Oy

Helsinki 2006
Preface

The present book condenses the essence of ETLA’s research project “The biotechnology industry as part of the Finnish innovation system” financed by Tekes. The project has resulted thus far in eight journal articles reprinted in this book, a dissertation for the Helsinki University of Technology, a Master’s thesis for the Helsinki School of Economics, an edited book published in Finnish and about thirty discussion papers and other articles.

The rapid emergence of new science-based entrepreneurship related to biotechnology necessitates the evaluation of potential niches that the Finnish biotechnology sector could profitably focus on whilst developing products with commercial potential. Moreover, the competence base must be sufficiently large to generate the critical mass necessary for spawning successful products and services. This book looks at the preconditions for turning research into commercial products from the standpoint of the competence base underlying such a critical mass by:

1) utilising international trade analysis to identify the most competitive biotechnology-based industrial clusters (Chapters 1 through 6),
2) classifying the statements on the most significant threats and opportunities expressed by the biotechnology company leaders (Chapter 3),
3) analysing the earnings potential of biotechnology related intellectual property rights (Chapter 4),
4) comparing the financial sources and realised business activity of the biotechnology businesses by region within the country (Chapter 5),
5) combining the results of the above discourses and applying them to the identified industrial clusters (Chapter 6).

Based on the analytical results and the international trade framework, this book provides important policy implications for both governmental bodies involved in innovation policy and start-up companies on their way to global markets.

Helsinki, 20 February, 2006
Sixten Korkman
ETLA, Managing Director
We would like to thank all the co-authors that have spared no efforts in contributing to the output presented in this book. All the authors appreciate the comments concerning the earlier versions of the contents of this book given by the participants in the meeting in which the need for the strategy was expressed at Tekes, 1 March, 2005; the spring meeting of the Finnish Bioindustries Organization, 28 April, 2005; the meeting of the biotechnology experts of the Finnish ministries, 26 May, 2005; the workshop on “Towards bio-based society: Technology Platform Plants for the Future” at the Academy of Finland, 15 June, 2005; and the ETLA Workshop on the Biotechnology Strategy for Finland, 2 August, 2005. We are also grateful for the comments from Deputy Director General Juhani Eskola (National Health Institute), Professor Pentti Hakkila (VTT Technical Research Centre of Finland, Metla Finnish Forest Research Institute), Neurologist Merja Kallio (Helsinki University Central Hospital), Director of Science Policy Division Sakari Karjalainen (Ministry of Education), Professor Juhani Kuusi (Retired Head of Nokia Research Center), Project Manager Pirjo Kyläkoski, (Tekes), Managing Director Heikki Laurila (Frux Advisors Ltd), Commercial Counsellor Pekka Lindroos (Ministry of Trade and Industry), Director Alicia Löfler (Director, Center for Biotechnology, Kellogg School of Management), Corporate Controller Anna Maria Nuutila (VTT Technical Research Centre of Finland), Deputy Director General Matti Oivukamäki (Ministry of Trade and Industry), Vice President Pekka Piironen (Head of Sustainable Development, Danisco Finland), Policy Officer Kimmo Pitkänen (European Commission), Professor Seppo Soinila (Helsinki University Central Hospital), Professor Hans Söderlund, (VTT Technical Research Centre of Finland), Research Economist Antti Tahvanainen (ETLA), Helena Torkkeli (Lecturer, Institute of Medical Technology), Senior Technology Adviser Teppo Tuomikoski (Tekes), and Research Director Pekka Ylä-Anttila (ETLA).

We would like to thank those 89 anonymous leaders of the Finnish biotechnology companies who participated in the ETLA biotechnology survey at the end of 2004 and expressed their opinions on the prospects of the Finnish biotechnology industry. We also appreciate Mikko Paakkola’s efforts in interviewing representatives of biotechnology companies and coding the data. The discussion with students in a class of BioBusiness in the Institute of Medical Technology is appreciated. We also express our gratitude to those who sent their comments by e-mail and who are referred to here as anonymous. We also appreciate earlier fruitful discussions with Riikka Heikin-
heimo (Executive Director, Tekes). We thank Professor Morton Kamien (Director, Heizer Center for Entrepreneurial Studies, Kellogg School of Management) for his comments on those studies that formed a basis for this strategy. We are greatly indebted for discussions on strategic tools and personal encouragement to Vice President Timo Hytönen (Empire Life Insurance Company), Visiting Professor Constance Lütolf-Carroll (Helsinki School of Economics), and University Lecturer Eden Yin (University of Cambridge, Judge Institute of Management). Finally, it should be noted that without the encouragement and comments from Assistant Director Saara Hassinen (Finnish Bioindustries), Director Raimo Pakkanen (Tekes), Senior Technology Adviser Maritta Perälä-Heape (Tekes), Director Aino Takala (Orion Pharma plc), and Group Manager Niklas von Weymarn (VTT Technical Research Centre of Finland) this book would not exist. The financing from Tekes, the National Technology Agency, is gratefully acknowledged. Finally, our sincere thanks to Roderick Dixon who checked the language, and to Tuula Ratapalo who put all the manuscripts into book form.

25th January 2006, in Evanston and Helsinki

Raine Hermans and Martti Kulvik
Summary

This book analyses the features of the Finnish biotechnology industry from three complementary perspectives as a basis for a strategic sustainable biotechnology development framework:

1) How do the company leaders see the future of the industry?
2) How do the companies value their intellectual property rights?
3) How does the regional resource allocation reflect the prosperity of the industry?

The strategic framework stresses orientation towards customer value as opposed to a strongly technological focus; the development of biotechnologies should not contain any intrinsic value per se. The commercial value of biotechnology could be benchmarked against the value of alternative technologies, and consequently, biotechnology could become part of the technology options for companies active in established and conventional industries.

The government might have an important role in preparing the companies for the harsh realities of the global marketplace and strengthening the links with the existing industrial pillars. However, the framework suggests the public support should be only temporary in each field of application and for any single company. Furthermore, the public sector should strengthen those ventures that share the government’s long-term goals of sustainable development, or those that utilise a regionally sufficient critical mass of skilled and specialised production factors.

The tools and forecasting methods applied and developed in this book could form a justified foundation for further discussion and measures. These tools could also be used in other high technology sectors at an infant commercialisation stage.

Below we present six central policy implications open to discussion:

1. Biotechnology in parallel with other technologies in public sector technology programmes. In order to ensure that technologically advanced projects reach their economic potential, the public sector should organise their technology programmes with the primary aim of developing specific industrial application areas or processes instead of a sole commitment to a certain technology field. The central issue is to guide the technology development projects to meet the needs of the market place. Accordingly, the technology programme on energy applications, for example, might subsidise research and development also in potential technological fields of conventional physical and more modern biological technology, not solely in biotechnol-
ogies. The biotechnology development should be mirrored and compared against presently dominant technologies in the production and utilisation of the specific application. If, and only if, a new technology offers clear advantages to the existing technology, the new technology should be strongly [but temporarily] supported.

2. Bioinformatics as a basis for the distinctive application areas. Utilising the Finnish population and patient databases would necessitate a strong development of the Finnish bioinformatics research and industrial activities. Furthermore, there are many application areas within plant and industrial biotechnologies. The accumulated competencies in the Finnish information and communication technology (ICT) sector provide a strong resource that could be exploited in the field of biotechnology. The creation of commercial applications in bioinformatics might bring together highly competent business experts of the Finnish ICT sector, venture capitalists and the biotechnology industry.

3. Public sector promoting R&D programmes: emphasising sustainable development. R&D projects of the biotechnology companies are aimed at increasing the owners’ wealth. Sustainable development, which is focused on long-term perspectives, does not necessarily provide any incentives for the leaders of a company. The public sector could be a sole actor steering the company’s R&D activities to such application areas, which are aligned with the strategic aims of the public sector related to sustainable development. Society could define how much it would be willing to pay for the promotion of sustainable development, and the biotechnology companies could assess the opportunity costs of the societal goals with the terms of financing from the private sector.

4. Public sector subsidising start-up companies: the customer approach. The public sector can set economically meaningful policy goals, which support sustainable development. As an example, the public sector can pursue restrictions on the increase of health care costs. Accordingly, a public sector financier should demand the same goals from the project that it subsidises; the public sector acts as a customer. Such behaviour would also steer the subsidised start-up company to consider the customer benefits. This requires the company to place special emphasis on pricing the product, and to communicate the cost-benefit ratio in measurable terms. The latter creates a basis for a solid valuation of the company. Thus, the public sector’s role as a customer advances the accumulation of business attitude and competencies within the company.

5. Public sector financing biotechnology companies: the venture capital approach. The financing body of the public sector can provide
external market-based financing for the companies at a more matured stage. In order to avoid serious market disturbances, the finance terms should be comparable to those of a private venture capitalist. Conventional milestones are set according to the strategy of the biotechnology company. If the R&D activities and the commercialisation do not proceed according to set milestones, the governmental venture capitalist performs a sanction; the project can be cancelled, the related IPRs can be realised or the ownership of the company can be transferred to another party. The failure of a publicly funded project should, however, produce some spill-over effects to other commercialising organisations in society, as opposed to privately funded projects. In all cases it is imperative that both parties have a clear incentive to act as transparently as possible, with clearly defined upside and downside risks.

6. The creation of globally competitive clusters. The biotechnology sector would benefit from the formation of clusters built on domestically abundant but globally relatively scarce resources that are regionally identified as critical masses. These clusters should be based on:

a. Unique factors of production
b. A domestic market laboratory
c. An internationally competitive supporting industry
d. A clearly communicated and well exercised sequential strategy.

The public sector can, for a limited period, boost such parts of an industrial cluster that are identified as being critical elements for long-term economic growth. We identified four clusters. This is however not an exhaustive list, and the identified clusters are, for example, pending on legislation and preferences of the public sector.

The development of biotechnologies should not contain any intrinsic value per se. The commercial value of the biotechnology could be benchmarked with the value of alternative technologies; and consequently, biotechnology could become part of the technology options for companies active in established and conventional industries.

The efforts in Finland have created a strong domestic biotechnology industry base. In the following step the key issue is to capture highest possible value from the efforts expended. We hope that the tools and forecasting methods applied and developed in this book and the appended related articles, could build a justified pathway for further discussion and measures.

The developed tools could favourably be used in other high technology sectors at an infant commercialisation stage as well. To that end, the valuable experience gained from the creation of the Finnish biotechnol-
ogy industry could be utilised even more pro-actively when considering prospective technological leaps.

Nanotechnology has been described as the next paradigm shift in technology. Being both highly technological in nature as well as generic by definition, it bears clear resemblance with the expectations put on biotechnology 1-2 decades earlier. Consequently, it could be fruitful to extend the presented methods and analyses to the context of nanotechnologies. This should be done in the near future, while the sector is still in its infant stage, at present an estimated 15 years behind biotechnologies in terms of commercial applications. The presented strategic framework, based on international trade literature could provide a solid basis for innovation policy and business activity in the small and open Finnish economy – before dedicating to major investments.
Contents

CHAPTER 1
Sustainable Technology Development and International Trade 1
*Raine Hermans – Martti Kulvik*

CHAPTER 2
The Biotechnology Industry in Finland 13
*Raine Hermans – Martti Kulvik – Antti-Jussi Tahvanainen*

CHAPTER 3
How do You See the Future Prospects of the Finnish Bio-
technology Industry? – Interviewing 89 Business Leaders 47
*Tomi Hussi – Raine Hermans – Martti Kulvik – Antti-Jussi Tahvanainen*

CHAPTER 4
Biotechnology Patent Citations: Economic Value and
Technological Significance 87
*Tuomo Nikulainen – Raine Hermans – Martti Kulvik*

CHAPTER 5
Regional Differences in Patterns of Collaboration,
Specialisation and Performance 117
*Raine Hermans – Antti-Jussi Tahvanainen*

CHAPTER 6
Initiatives on a Sustainable Development Strategy for
Finnish Biotechnology 155
*Raine Hermans – Martti Kulvik*

Appendix 1. International Mega-trends and Growth Prospects
of the Finnish Biotechnology Industry 185
Appendix 2. Price-cost Margin in the Pharmaceutical Industry 199
Appendix 3. Growth Inhibitors of Entrepreneurial Academic
Spin-Offs 209
Appendix 4. Measuring Intellectual Capital and Sources of
Equity Financing 233
Appendix 5. Funding Intellectual-Capital-Abundant Technology
Development 257
Appendix 6. Value Creation Potential of Intellectual Capital in
Biotechnology 275
Appendix 7. Variability of Organisational Forms of Bio-
technology Firms 293
Appendix 8. Projected Growth Effects of the Biotechnology
Industry in Finland 309
Editors:
Raine Hermans, Ph.D. (Tech.), M.Soc.Sc. (Econ.)
r-hermans@kellogg.northwestern.edu
Kellogg School of Management, Northwestern University
Center for Biotechnology, Office 5234, 2001 Sheridan Road
Evanston, IL-60208, USA

Martti Kulvik, MD, MBA (Biotech. Mgmt)
martti.kulvik@etla.fi
ETLA, The Research Institute of the Finnish Economy
Lönnrotinkatu 4 B, FI-00120 Helsinki, Finland

Other contributors:
Appendix II
Taru Hallinen, M.Sc. (Econ.)
taru.hallinen@uku.fi – University of Kuopio

Chapter 4
Tomi Hussi, Ph.D. (Econ.), M.Soc.Sc. (Soc. Psyc.)
tomi.hussi@imafi.fi – Intangibles Management Finland Ltd

Appendix VI
Ilkka Kauranen, Prof. (Ind. Mgmt)
ilkka@ait.ac.th – Asian Institute of Technology, Thailand

Appendix II
Ismo Linnosmaa, Ph.D. (Econ.)
ismo.linnosmaa@uku.fi – University of Kuopio

Appendix VII
Terttu Luukkonen, D.Soc.Sc. (Sociol.)
terptu.luukkonen@etla.fi – ETLA, The Research Institute of the Finnish Economy

Chapter 3
Tuomo Nikulainen, M.Sc. (Econ.)
tuomo.nikulainen@hkkk.fi – Helsinki School of Economics

Chapters 2, 4, 5, and Appendices III and V
Antti-Jussi Tahvanainen, M.Sc. (Econ.)
antti.tahvanainen@etla.fi – ETLA, The Research Institute of the Finnish Economy

Appendix I
Pekka Ylä-Anttila, Research Director (Ind. Econ. and Int. Bus.)
pekka.yla-anttila@etla.fi – ETLA, The Research Institute of the Finnish Economy
Biotechnology drives solutions for sustainable development. Breakthroughs in biotechnology can: cure once incurable diseases; enable rapid response to health crises; improve plant health to withstand environmental stress to enhance food security; promote animal health; address antimicrobial resistance; reduce greenhouse gases; and develop food ingredients that provide micronutrients and fortified food solutions to help end hunger.