When Duncan J. Watts proposed his new idea to his advisor, Professor Steve Strogatz, he was completely afraid of being laughed out of Steve's office. His idea was just something ambiguously worthwhile, spanning several different disciplines, most of which both of them knew very little about. With encouragement and advice from Steve, graphs that combine structure with randomness were studied. The results of their work were published in Nature and the Cornell Ph.D. thesis of Watts. This book essentially came from Duncan's thesis.

The phenomena known as the "six degrees of separation" pervades our daily life. It means that two people who do not know each other can find a friendship chain of a distance of six people or less. Statistics show that most movie actors fall within a distance of four to Kevin Bacon of co-acting in a movie. This kind of bizarre correlation is referred to as the "small-world phenomenon". It is the analysis and formalization of this phenomenon that is the theme of this book.

The book is quite diverse and comprehensive in its scope while never forgetting its theme. It consists of ten chapters grouped into two parts. It ends with a bibliography of eight pages where one can find plenty of literature on this topic and related fields.

The chapters are presented in a logical sequence, starting with an introductory story about the six degrees of Kevin Bacon and an overview of the phenomenon. The overview provides a discussion of relational graphs, spatial graphs, transitions in them, and real networks. After the overview, the models and exploration of the dynamical behavior of small-world systems are examined in chapters three and four. Chapter three introduces graph-theoretic models, for example, the alpha- and beta-relational models, and identifies the new class of
graphs: small-world graphs. Chapter four contains a heuristic construction and makes analytic approximations.

Examples of real small-world networks are studied in chapter five, while examples of small-world dynamical systems are examined in chapters six through nine of part two. If you do not have background knowledge on this topic, it is best to read this book from cover to cover following its organization logic.

However the book does not cover very recent results, as the preface might suggest. This is due to the author making further additions and refinements after the book was published in 1999. Further research is conducted at the Santa Fe Institute, and more information may be found on their web site.

There is a wealth of cleanly and carefully drawn figures and diagrams, solely from which you can easily enjoy the beauty of science. They are also very helpful in understanding the contents of the book.

All in all this is an excellent book. It was pure pleasure to read for this review. You will get to know and become familiar with this fantastic topic. You will also see how outstanding researchers are discovering something new based upon previous results. I strongly recommend people reading this book, including students, specialists, researchers and scientists.
A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network. This will be seized on by those seeking a first rough map of this fascinating new mathematical land. Those entering can expect to find some amazing connections between areas of research with apparently nothing in common, such as neurology to business studies. But then, it's a small world.'

Robert Matthews, New Scientist.

Contents:

6.2.2 Permanent-Removal Dynamics 169
6.2.3 Temporary-Removal Dynamics 176
6.3 Main Points in Review 180
7 Global Computation in Cellular Automata 181
7.1 Background 181
7.1.1 Global Computation 184
7.2 Cellular Automata on Graphs 187
7.2.1 Density Classification 187
7.2.2 Synchronisation 195
7.3 Main Points in Review.