Designer Genetic Algorithms:
Genetic Algorithms in Structure Design

Sushil J. Louis
Department of Computer Science
Indiana University, Bloomington, IN 47405
louis@iuux.cs.indiana.edu

Gregory J. E. Rawlins
Department of Computer Science
Indiana University, Bloomington, IN 47405
rawlins@iuux.cs.indiana.edu

Abstract

This paper considers the problem of using genetic algorithms to design structures. We relax one constraint on classical genetic algorithms and describe a genetic algorithm that uses differential information about search direction to design structures. This differential information is captured by a masked crossover operator which also removes the bias toward short schemas. We analyze performance and present some preliminary results. Further, consideration of this problem suggests a partial solution to the identification of the deception problem.

1 INTRODUCTION

The problem of designing structures is pervasive in science and engineering. The problem is:

Given a function and some materials to work with, design a structure that performs this function subject to certain constraints.

As an example of the design problem, consider the combinational circuit design problem: Given a set of logic gates, design a circuit that performs a desired function. Two instantiations of this problem are the parity problem and the adder problem. A solution to these two problems is given in most introductory textbooks on digital design (see figures 1 and 2). Both problems are well-defined, unambiguous, easy to evaluate, and can be scaled in difficulty. In addition, we can change the number of solutions (the footprint) in the search space of a particular instantiation by varying the types of gates available. We therefore use them as a testbed and as a basis for performance comparison of various design strategies.

Design is traditionally considered a creative process and so difficult to automate. Expert systems that seek to codify knowledge are currently too brittle and not applicable across a broad range of domains. However, natural selection has been spectacularly successful in producing a broad range of robust structures that are efficient at performing a broad range of functions. Its success is evident from the abundance and diversity of life on this planet.

Genetic Algorithms (GAs), based on natural selection, should enjoy similar success in solving the problem of design. However when naively applied, their performance is less than encouraging. The difficulties lie in the enormous size of the problem, the interdependence among parts in the structure, and the biases inherent in current GAs. This interdependence is called epistasis and is an important aspect of well-designed structures. For example, if we use the elements of a two-dimensional array to represent gates in the textbook solution to the parity problem, the XOR gates must lie on the diagonal. Such interdependence is crucial in the design of a correct circuit [16].
The problem of structure design points out the major problem of choosing a good representation for GAs. A classical GA will do well, only if we artfully choose just the right encoding (non-epistatic), in essence, helping the search process. We solve this problem by using the fitness difference between parents and children to indicate good directions to bias search. Such directional information is easily available but cannot be explicitly stored and used in nature. Classical GAs mimicking nature also do not use this information. We however, can and do explicitly use this directional information to bias search toward high-performance schemas of arbitrary length thus reducing the dependence on encoding. In addition, we may identify deception by using this information alone or in conjunction with other methods and take remedial action. This approach is further developed in section three.

The next section defines a classical genetic algorithm and presents problems with using it for design. This leads to what we call a Designer Genetic Algorithm (DGA) described in section three. Preliminary results, presented in the fourth section, indicate the usefulness of DGAs. The last section covers conclusions and directions for future research.

2 CLASSICAL GAs

A genetic algorithm, first defined by Holland, is a randomized parallel search method modeled on evolution [15]. GAs are being applied to a variety of problems and are becoming an important tool in machine learning and function optimization [10]. Their beauty lies in their ability to model the robustness, flexibility and graceful degradation of biological systems. However, there has been little research on their applicability to design problems; much of the GA literature concerns function optimization. Any reference to design invariably means optimization of design parameters. In such problems the initial structure is fixed and the object is to optimize some associated cost [1, 17]. For example, in Goldberg and Samtani [9] a GA minimizes the weight of a 10-member plane truss, subject to maximum and minimum stress constraints on each member. Although such design parameter optimization is important, our problem is to design the initial structure itself.

A GA encodes each of a problem's parameters as a binary string. An encoded parameter can be thought of as a gene, the parameter's values, the gene's alleles. The string produced by the concatenation of all the encoded parameters forms a genotype. The basic algorithm, where \(P(t) \) is the population of strings at generation \(t \), is given below.

\[
\begin{align*}
t & = 0 \\
\text{initialize } & P(t) \\
\text{evaluate } & P(t)
\end{align*}
\]

while termination condition false do

select \(P(t+1) \) from \(P(t) \)
recombine \(P(t+1) \)
evaluate \(P(t+1) \)
\(t = t + 1 \)

Selection is done on the basis of relative fitness and it probabilistically culls from the population those points which have relatively low fitness. Recombination, which consists of mutation and crossover, imitates sexual reproduction. Mutation probabilistically chooses a bit and flips it. Crossover (CX) is a structured yet randomized operator that allows information exchange between points. It is implemented by choosing a random point in the selected pair of strings and exchanging the substrings defined by that point. Figure 3 shows how crossover mixes information from two parent strings \(A \) and \(B \), producing offspring \(C \) and \(D \) made up of parts from both parents. We note that this operator which does no table lookups or backtracking, is very efficient because of its simplicity.

Holland’s schema theorem is fundamental to the theory of genetic algorithms [15]. A schema is a template that identifies a subset of strings with similarities at certain string positions. For example consider binary strings of length 6. The schema 1**0*1 describes the set of all strings of length 6 with 1s at positions 1 and 6 and a 0 at position 4. The "*" is a "don't care" symbol; positions 2, 3 and 5 can be either a 1 or a 0. The order of a schema is the number of fixed positions in the schema, while the length is the distance between the first and last specific positions. The order of 1**0*1 is 3 and its length is 5. The fitness of a schema is the average fitness of all strings matching the schema.

The schema theorem proves that relatively short, low-order, above-average schemas get an exponentially increasing number of trials in subsequent generations. Long, low-order, high-performance schema do not play a significant role in biasing genetic search.

2.1 GAs for STRUCTURE DESIGN

Using a genetic algorithm to design a structure is like playing with a child’s construction kit. Given some low level building blocks, we have to put them together
so that they perform a certain function. A GA used for design manipulates low-level "tools," or building blocks, playing with their arrangements, until it finds the required structure. But there are three problems:

First, a necessary condition for a GA to build a structure is that there should be at least one and preferably many evolutionary paths leading to the desired structure. A GA (or any search method) will perform poorly in optimizing a function that is zero at all points but one [5].

Second, the mapping from genotype to phenotype is now much more complex. We can compare the structure of an eye (a structure phenotype) with a point in the search space (a phenotype in function optimization) to get an idea of this complexity. Epistasis in phenotypic structures plays an important part in determining the suitability of classical genetic algorithms to structure design. Phenotypic epistasis may not be reflected in the genotype (unless it is very carefully encoded) and so will seriously degrade GA performance.

Finally, since we are working with structures, we often work in more than one dimension. Physical structures exist in three dimensions and may often be made up of many kinds of lower level building blocks. Higher dimensionality and a large alphabet increase the search space tremendously.

2.2 CROSSOVER BIAS

Long schemas tend to be disrupted by CX more often than shorter ones. Let H be a schema, $\delta(H)$ its length and $O(H)$ its order. Then the probability that the crossover point falls within the schema is $\delta(H)/(l - 1)$ where l is the length of the string containing the schema. However, in epistatic domains, schemas of arbitrary length need to be preserved. If the encoding does not ensure that low-order schemas are short the GA will not make progress.

One way out of this is to use inversion. Inversion re-arranges the bits in a string allowing linked bits to move closer together. Inversion-like reordering operators have been implemented by Goldberg and others [8, 21] with some success. The problem with using inversion and inversion-like operators is the decrease in computational feasibility. If l is the length of a string, inversion increases the search space from 2^l to 2^{2l}. Natural selection has geological time scales to work with and therefore inversion is sufficient to generate tight linkage. We do not have this amount of time nor the resources available to nature.

Another approach is to use a new crossover operator like punctuated crossover or uniform crossover. Punctuated crossover (PX) relies on a binary mask, carried along as part of the genotype, in which a 1 identifies a crossover point. Masks, being part of the genotypic string, change through crossover and mutation. Experimental results with punctuated crossover did not conclusively prove the usefulness of this operator or whether these masks adapt to an encoding [18, 19].

Uniform crossover (UX) exchanges corresponding bits with a probability of 0.5. The probability of disruption of a schema is now proportional to the order of the schema and independent of its length. Experimental results with uniform crossover suggest that this property is useful in some problems [20]. However, in design problems we would like not to disrupt highly fit schemas whatever their length.

None of these operators uses directional information. In the next section, we define a masked crossover operator that removes the bias toward short schemas by using directional information to efficiently bias search.

3 MASKED CROSSOVER

We define an operator that uses the relative fitness of the children with respect to their parents, to guide crossover. The relative fitness of the children indicates the desirability of proceeding in a particular search direction. The use of this information is not limited to our operator, and can be used in classical GAs with minor modifications [16].

Masked crossover (MX) uses binary masks to direct crossover. Let A and B be the two parent strings, and let C and D be the two children produced. $Mask_1$ and $Mask_2$ are a binary mask pair, where $Mask_1$ is associated with A and $Mask_2$ with B. A subscript indicates a bit position in a string. Masked crossover is shown in figure 4 and defined below:

```
copy A to C and B to D
for i from 1 to string-length
  if $Mask_{2i} = 1$ and $Mask_{1i} = 0$
    copy the $i^{th}$ bit from $B$ to $C$
  if $Mask_{1i} = 1$ and $Mask_{2i} = 0$
    copy the $i^{th}$ bit from $A$ to $D$
```

MX tries to preserve schemas identified by the masks. Call A the dominant parent with respect to C; C inherits A's bits unless B feels strongly ($Mask_{2i} = 1$) and A does not ($Mask_{1i} = 0$). The traditional way of analyzing a crossover operator is in terms of disrup-

![Figure 4: Masked crossover.](image-url)
tion. The probability of disruption \(P_d \) of a schema \(H \) due to masked crossover is dependent on the masks. Assuming a random initialization of masks this probability is given by the number of ways that the bit positions in both parent masks corresponding to \(H \) can be combined to disrupt \(H \) in the following generation. The total number of ways of combining the mask bits corresponding to \(H \) is:

\[
T = 2^x \cdot O(H)
\]

The number of ways of disrupting \(H \) is \(T \) minus the number of ways of preserving \(H \), \(P_H \). For each bit position in \(H \), there are three ways of preserving it, therefore:

\[
P_H = 3^x \cdot O(H)
\]

So the probability of disruption is:

\[
P_d = \frac{T - P_H}{T} = 1 - \left(\frac{3}{4} \right)^x \cdot O(H)
\]

This probability of disruption does not depend on \(\delta(H) \). Intuitively, 1’s in the mask signify bits participating in schemata. MX preserves \(A \)'s schemata in \(C \) while adding some schemata from \(B \) at those positions that \(A \) has not fixed. A similar process produces \(D \). In addition, MX can combine overlapping schemata with less disruption than UX. This allows creation of schemata that would be impossible with one point crossover.\(^1\) To ensure that the semantic interpretation of mask bits is correct, we modify masks in subsequent generations. Modifying masks will change the probability of disruption. Using fitness information to guide mask modification in subsequent generations, we would like to decrease the probability of disruption of highly-fit schemata independent of length. Instead of using genetic operators on masks, we use a set of rules that operate bitwise on parent masks to control future mask settings. Since crossover is controlled by masks, using meta-masks to control mask string crossover then leads to meta-meta masks and so on. To avoid this problem we use rules for mask propagation. Choosing the rule to be used depends on the fitness of the child relative to that of its parents. We define three types of children:

- **Good** child: more fit than best parent.
- **Average** child: fitness between that of the parents.
- **Bad** child: less (or equally) fit than worst parent.

With two children produced by each crossover, and three types of children there are a six cases, with associated interpretations and possible actions on the masks (see figure 5).

\(^1\) A simple example: the string 111 cannot be produced from 101 and 010 by one point crossover

<table>
<thead>
<tr>
<th>Case</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both good</td>
<td>(MF_{GG})</td>
</tr>
<tr>
<td>Both bad</td>
<td>(MF_{BB})</td>
</tr>
<tr>
<td>Both average</td>
<td>(MF_{AB})</td>
</tr>
<tr>
<td>One good, one bad</td>
<td>(MF_{GB})</td>
</tr>
<tr>
<td>One good, one average</td>
<td>(MF_{GA})</td>
</tr>
<tr>
<td>One average, one bad</td>
<td>(MF_{BB})</td>
</tr>
</tbody>
</table>

Figure 5: Mask rules for the six ways of pairing children.

![Mask rules](image)

Figure 6: Mask rule \(MF_{GG} \): Example of mask propagation when both \(C1 \) and \(C2 \) are good.

3.1 Mask Rules

This section specifies rules for mask propagation. In each case a child's mask is a copy of the dominant parent's except for the changes the rules allow. The underlying premise guiding the rules is that when a child is less fit than its dominant parent, the recessive parent contributed bits deleterious to its fitness. We want to encourage search in the convex subspace defined by the loci. The idea is to search in areas close to one parent with information from the other parent providing some guidance. Note that in MX, this is done without regard to length. A mask mutation operator that flips a mask bit with low probability acts during mask propagation. We provide two representative mask functions rather than all, to give an intuitive understanding of their form. These are \(MF_{GG} \), used when both children are good and \(MF_{BB} \), used when both children are bad (for more details see Louis and Rawlins [16]).

Let \(P1 \) and \(P2 \) be the two parents, \(PM1 \) and \(PM2 \) their respective masks. Similarly, \(C1 \) and \(C2 \) are the two children with masks \(CM1 \) and \(CM2 \). The modifications to masks depend on the relative ordering of \(P1, P2, C1 \) and \(C2 \). For the figures in this section, the "#" represents positions decided by tossing a coin.

1. **\(MF_{GG} \):** Both children are good.

 Summary: Encouraging behavior. Parents' masks are OR'd to produce the children's masks, ensuring preservation of the contributions from both parents (see figure 6).

 Action:
 - \(CM1 \) and \(CM2 \): OR the masks of \(PM1 \) and \(PM2 \). If there are any 0's left in \(CM1 \), toss...
Many sets of mask propagation rules can be defined. In fact a GA can search the space of mask rules to find a suitable set. This may be overkill, since the number of rules is usually quite small, simpler methods will suffice. Results, outlined in the next section, indicate that a significant performance increase is obtained from even the simple set of rules above.

MX presents a problem when using classical selection procedures. The classical strategy replaces the original population with the new children produced, but does not allow a genetic algorithm using masked crossover to converge. Masks will tend to disrupt the best individuals while searching for promising directions to explore because of the nature of the rules guiding mask propagation. Therefore our selection procedure is a modification of the CHC selection strategy [6]. If the population size is N, the children produced double the population to 2N. From this, the N best individuals are chosen for further consideration. We use this elitist selection strategy to guarantee convergence. Another problem which may occur is that although MX preserves schemas of arbitrary length, the fitness information itself may be misleading. Such problems are called deceptive [10]. When fitness information is misleading we expect a GA using MX to perform worse than a GA using crossover operators that do not use such information. This is borne out by results from the adder problem. A Designer Genetic Algorithm (DGA) therefore differs from a Classical GA (CGA) in the crossover operator (MX) and in the selection strategy (elitist) used.

Identifying and overcoming deception, is an important area of research. Theoretically, deception is identifiable by mathematical analysis. However, from a practical standpoint, this analysis is prohibitively expensive. Messy genetic algorithms (MGAs), developed by Goldberg to handle deception, need to identify deceptive schemas to be applicable [13, 14]. We suggest an approach satisfying both criteria, using designer genetic algorithms.

Deception can be statically identified using the ANODE algorithm suggested by Goldberg [11, 12]. Recent results indicate that the Nonuniform Walsh-Schema Transform (NWST) [2] can dynamically analyze a GA. Using the NWST in concert with the normal operation of a GA, we can collect runtime statistics needed to identify deception. Furthermore, we can improve efficiency by removing some of the determinism in the ANODE algorithm. This will not significantly alter effectiveness as long as the probability of correctly identifying deception is greater than that of incorrectly identifying it. In other words, we propose to let a DGA collect runtime statistics on encoding (through the NWST) and use these statistics to set masks. Whenever the DGA detects deception either through a periodic check of these statistics and/or a decrease in rate of progress, the algorithm identifies
deceptive schema with the help of the statistics collected and the masks. It then allows an MGA to work on just these schema and solve the deception at this level. The DGA then continues, appropriately seeded with the optimal schema produced by the MGA. Our current research follows this approach.

4 RESULTS

We compare a designer genetic algorithm’s performance with that of a classical GA on the adder and parity problems. In all experiments, the population is made up of 30 genotypes. The probability of crossover is 0.7 and the probability of mutation for masks and genotypes is 0.04. These numbers were found to be optimal through a series of experiments using various population sizes and probabilities. The graphs in this section plot average fitness over ten runs.

Each genotype is a bit string that maps to a two-dimensional structure (phenotype) embodying a circuit. We need 3 bits to represent 8 possible gates. A gate has two inputs and one output. If we consider the phenotype as a two dimensional array of gates S, a gate S_{ij} gets its first input from $S_{i,j-1}$ and its second from one of $S_{i+1,j-1}$ or $S_{i-1,j-1}$. An additional bit associated with each gate encodes this choice. If the gate is in the first or last rows, the row number for the second input is calculated modulo the number of rows. The gates in the first column, $S_{i,0}$ receive the input to the circuit. Connecting wires are simply gates that transfer their first input to their output. The other gates are AND, OR (inclusive OR), NOT and XOR (exclusive OR). We determine the fitness of a genotype by evaluating the associated phenotypic structure that specifies a circuit. If the number of bits is n, the circuit is tested on the 2^n possible combinations of n bits. The GA maximizes the sum of correct responses (For more detail see Louis and Rawlins [16]). It is also possible to use only a subset of the possible inputs, reverting to the complete set only when the population converges prematurely. This results in significant savings in time.

We compare the performance of a classical GA using elitist selection with a DGA on a 2-bit adder problem. The graph in figure 8 shows that the classical GA does better, although the difference is not great. This is not very encouraging. However, if we look at the solution space we see that solutions to the adder problem involve deception. As explained earlier, since MX uses fitness information to bias search, it is more easily mislead than traditional crossover. Even if a problem is deceptive, it does not mean that no solutions can be found. Figures 9 and 10 show solutions to the 2-bit adder problem found by a designer genetic algorithm and classical genetic algorithm. As wire gates ignore their second input, only one input is shown for such gates. The gate at position S_{33} is shown unconnected because it does not affect the output. Although we have not done a rigorous study of the types of solutions found by both algorithms, we see that the circuit designed by the DGA depends on long schemas. For example S_{03} gets its input from S_{32} which is 11 units away, where 11 is large compared with 16, the length of the genotype. This is in marked contrast to the CGA circuit.

We now consider the parity problem. The encoding described above will violate the “principle of meaningful building blocks” with regard to the solution to the parity problem as shown in figure 1 [10]. Since diagonal elements of S (the phenotype) are further apart in the string, any good subsolutions (highly fit, lower order schemas) found will tend to be disrupted by traditional crossover. MX however, will find and preserve these subsolutions as its performance is independent of length. To observe performance under these conditions, we restrict the number of gate types available to the GA to three and do not allow a choice of input (the second input is now always from the next row,

![Figure 8: Performance comparison of average fitness per generation of a classical GA versus a DGA on a 2-bit adder.](image)

![Figure 9: A 2-bit adder designed by a designer genetic algorithm.](image)

![Figure 10: A 2-bit adder designed by a classical genetic algorithm.](image)
5-bit Parity Checker

Figure 11: Performance comparison of average fitness per generation of a classical GA versus a DGA on a 4-bit parity checker.

Figure 12: Performance comparison of average fitness per generation of a classical GA versus a DGA on a 5-bit parity checker.

Figure 13: Performance comparison of average fitness per generation of a traditional CGA, an elitist CGA, and a DGA.

Figure 14: A Circuit designed by a DGA that solves the 4-bit parity problem.

shows a 4-bit parity checker produced by the DGA.

5 CONCLUSIONS

We have shown that a designer genetic algorithm relaxes the emphasis on schema of short length. This increases the domain of successful GA applications since a GA programmer no longer needs to follow the principle of meaningful building blocks. Using masked crossover mitigates the problem of epistasis while elitist selection is crucial to good performance on design problems. The increase in cost in using a DGA is by at most a constant factor per generation. This comes from the cost of sorting a population of size n ($n \log n$), and a constant cost for mask propagation. Comparing the performance of the two GAs on a problem also gives significant insights about properties of the search space.

Selection plays the largest part in biasing genetic search. We can think of a genetic algorithm as a search process at two levels. At the selection level, search is biased by fitness information. However, at the recombination level, search is essentially random (in classical GAs). Using fitness information to bias search at the recombination level allows a DGA to do better as is indicated by our results. However, if the fitness information is misleading, a GA will be led astray. The DGA will be misled at both levels, in contrast to the the CGA which will be mislead only at the selection level.

Experiments with the standard test suite of five functions first used by DeJong show no significant differ-
ence in performance [4]. In the experiments we used the same elitist selection strategy for both the DGA and the classical GA. These results were to be expected as DeJong's criteria for choosing his functions were not based on the epistatic or deceptive properties of these functions.

This paper uses a simple representation and only considers binary masks which piggyback on their associated strings. Mathematical analysis of the effects of mask rules on these simple masks is being done. We are also looking at more general representations and non-binary masks. Finally, identifying and handling deception dynamically, forms the thrust of our current research.

References

Genetic Algorithms (GAs) are adaptive heuristic search algorithms that belong to the larger part of evolutionary algorithms. Genetic algorithms are based on the ideas of natural selection and genetics. These are intelligent exploitation of random search provided with historical data to direct the search into the region of better performance in solution space. They are commonly used to generate high-quality solutions for optimization problems and search problems. Genetic algorithms are based on an analogy with genetic structure and behavior of chromosome of the population. Following is the foundation of GAs based on this analogy. Individual in population compete for resources and mate.